Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized.more » « less
-
Three occupancy grid map (OGM) datasets for the paper titled "Stochastic Occupancy Grid Map Prediction in Dynamic Scenes" by Zhanteng Xie and Philip Dames 1. OGM-Turtlebot2: collected by a simulated Turtlebot2 with a maximum speed of 0.8 m/s navigates around a lobby Gazebo environment with 34 moving pedestrians using random start points and goal points 2. OGM-Jackal: extracted from two sub-datasets of the socially compliant navigation dataset (SCAND), which was collected by the Jackal robot with a maximum speed of 2.0 m/s at the outdoor environment of the UT Austin 3. OGM-Spot: extracted from two sub-datasets of the socially compliant navigation dataset (SCAND), which was collected by the Spot robot with a maximum speed of 1.6 m/s at the Union Building of the UT Austin The relevant code is available at: OGM prediction: https://github.com/TempleRAIL/SOGMP OGM mapping with GPU: https://github.com/TempleRAIL/occupancy_grid_mapping_torchmore » « less
-
This paper proposes a novel neural network-based control policy to enable a mobile robot to navigate safety through environments filled with both static obstacles, such as tables and chairs, and dense crowds of pedestrians. The network architecture uses early fusion to combine a short history of lidar data with kinematic data about nearby pedestrians. This kinematic data is key to enable safe robot navigation in these uncontrolled, human-filled environments. The network is trained in a supervised setting, using expert demonstrations to learn safe navigation behaviors. A series of experiments in detailed simulated environments demonstrate the efficacy of this policy, which is able to achieve a higher success rate than either standard model-based planners or state-of-the-art neural network control policies that use only raw sensor data.more » « less
An official website of the United States government
